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Abstract

Rabi oscillations of a two-level atomic system with damping effects are
described by the use of a pseudo-Hermitian Hamiltonian. The Rabi frequency
and the amplitudes for being in the upper and lower level depend in the present
system on both the Hermitian resonant interaction between the em field and the
atomic dipole and on damping effects. The time development of the two-level
system is studied by using the metric of the pseudo-Hermitian Hamiltonian
and its bi-orthonormal basis of states. The special characteristics of the present
system are related to PT (parity-time reversal) and C (generalized conjugation
operator) invariant properties of the pseudo-Hermitian Hamiltonian.

PACS numbers: 03.65.Ge, 42.50.Ct

1. Introduction

A basic postulate of quantum mechanics is that observables are represented by Hermitian
Hilbert space operators and that their time propagators are given by unitary operators. It has
been shown, however, that non-Hermitian operators and Hamiltonians are very efficient for
treating scattering phenomena in atomic and molecular physics [1, 2]. Bender et al [3—7] have
suggested replacing the condition of self-adjointness by the weaker condition of PT (parity-
time reversal) symmetry, which leads sometimes to real eigenvalues of the non-Hermitian
Hamiltonian. By using an additional C (conjugation operator) symmetry [5], an inner product
whose associated norm is positive definite could be constructed. The concept of a pseudo-
Hermitian property has been introduced [8—12] and it has been shown that the interesting
spectral properties of the PT-symmetric Hamiltonian follow from their pseudo-Hermiticity.
The concept of pseudo-Hermiticity is developed by following a definition of ‘distorted’ inner
product: (i|ny) where 7 is called the metric. A Hamiltonian is called pseudo-Hermitian if
[8-12]

nHn' = H'. ()
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Pseudo-Hermiticity is a general condition on a Hamiltonian for possessing real eigenvalues,
and its relation with PT symmetry is important in relation to physical systems. Various
mathematical properties of pseudo-Hermitian Hamiltonians have been analysed [3—13]. There
is an enormous amount of published literature on pseudo-Hermitian Hamiltonian systems. We
have referred here to a few articles on which the present analysis is based (see additional
references in [3—13]).

In this paper we use a pseudo-Hermitian Hamiltonian to treat a certain problem taken
from the field of quantum optics. The analysis leads to physical results which may be checked
experimentally.

We assume an atomic system where the atom is excited into a superposition of two levels
which are above the ground state. The wavefunction of the two-level atomic system is given
by

V) = Cild) + i), @
where a and b denote, respectively, the upper and lower level of these two excited levels. C),

and C; are the amplitudes of being in these two levels where the amplitudes are functions of
time due to the interactions:

(a) resonant interaction between monochromatic em field and the atomic dipole moment
between the two levels.

(b) Damping of the atoms from the upper and lower level is described by phenomenological
decay constants y, and Y}, respectively.

Under these assumptions the amplitudes of the two levels are developed in time, in the
interaction picture and in the rotating wave approximation on resonance as [14]

iC! = —iy,C, + VC,,

Ll . ’ * o/ (3)
iCy, = —iyC,+V*C, (h=1)
where V is the radiation—atom interaction matrix element between the two levels.
Defining
Co = Cexp[1/2(ya + yp)t], Cp = C,expl1/2(ya + vp)t], “4)

we get after a straightforward algebra:

s Ya—W)
90 <C> _ (17 y v : <C> )
ot \Cyp V* i1 JA G

which can be written as

N T () P e ) F e R
at \Cp Cy)’ vE iy )’ ¢ =1).

The Hamiltonian of equation (6) is pseudo-Hermitian as it obeys the conditions of theorem 3
of [13] ‘a traceless 2 x 2 matrix is pseudo-Hermitian if and only if it has a real determinant’.
This pseudo-Hermitian Hamiltonian has certain properties and symmetries which will be
obtained here by the methods given in [3—13]. One should take into account that, although all
the following analysis concentrates on solutions of the Schrodinger equation for Hamiltonian
(6), the amplitudes C, and C; are obtained from C, and C; by multiplying the latter by the
phenomenological common exponential decay constant exp[—(1/2)(y, + y»)t]. In principle
one can consider the possibility of designing a two-level system which will follow the use
of equation (6) directly, but the use of the present transformation from equations (3) to (6)
can be more easily exploited experimentally. One should take into account that, for small
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deviations from resonance, equations (3) should be modified [14] but for simplicity we limit
the treatment to exact resonance.

This paper is arranged as follows: in section 2 we relate the solutions of (6) to its
properties as a pseudo-Hermitian Hamiltonian with real eigenvalues. In section 3 we discuss
the symmetries of this pseudo-Hermitian Hamiltonian. In section 4 we summarize our results.

2. The time development of the two-level system under the pseudo-Hermitian
Hamiltonian with real eigenvalues

The Hamiltonian (6) is diagonalizable for any combination of y and V with the following
values for the eigenvalues:

E.=+/|V2 -2 (7)

For simplicity of notation we will denote E, as E and E_ as —E. The similarity matrix
associated with the diagonalization is

Do L (VIVE=y—iy =JIVP=y>—iy) _1(E-iy —E-iy ®)
T E %4 V* T E\ V¥ V*

and a set of eigenvectors is given by

M):i(m—iy>: ! (E—iy)

E V= E Vv ©
YT Ve “E\ v )

We find that under the condition |V|?> > y? the energies are real although the Hamiltonian
is non-Hermitian. This condition is especially interesting in quantum optics as we get Rabi
oscillations which are different from the ordinary ones. We analyse our system under this
condition (we will comment at the end of this section on the solutions under the conditions
|V|> < y2, and |V|?> = y2). We use the following theorem proved in [9] which helps us in
fixing a certain definite metric:

If a pseudo-Hermitian n x n matrix H admits real eigenvalues (E, E>...) and D is
its diagonalizing matrix, then H is n pseudo-Hermitian where n = (DD')~!. The
converse is also true.

One should take into account that it is possible to choose another diagonalizing matrix
D and consequently another choice of eigenvectors and metric operator n,. The above
theorem does not eliminate the non-uniqueness of 7, but uses a specific set of eigenvectors
and correspondingly a specific metric 7, by which we make the present analysis. Using this
theorem we construct the positive definite metric

IR O A 2
:7+=(DD*)‘=5<_W*Z 'V1'>- (10)
4

As a consequence of the metric 1, we get the positive definite inner product:

(UmInen) = (UmlTn) = Smn (11)
where (V,,,| and

[n+9n) = L) (12)
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constitute the bi-orthonormal basis. Using (9), (10) and (12) we get

1 _1
|F1>=< ) E>; |F2)=<- 2E>. (13)
—3v tav W+ v

One can easily check that (,,| im = 1,2) of (9) and I',, (n = 1,2) of (13) obey the bi-
orthonormality conditions (11).

We can use the above formalism for evaluating the time development of the two-level
system under the pseudo-Hermitian Hamiltonian (6) with the real eigenvalues £, = —E_ =
E. The initial two-level wavefunction can be described as a superposition of the eigenstates
[Y1) and [y,) of the pseudo-Hermitian Hamiltonian:

[¥(0)) = C1(0)[y1) + C2(0)[¥2), (14)

where C;(0) and C;(0) are the amplitudes of |i/;) and |y,), correspondingly, at time ¢ = 0.
The time development of this state is given as

[V (1) = C1(D)]Y1) + C2(D)[V2) 5)

where
Ci(t) = C1(0) exp(—iEt); Co(t) = C2(0) exp(iED). (16)

We find that a simple time development of the state is obtained by representing it as a linear
combination of the eigenstates [v;) and |y), as given in (15) and (16). Physically it is
convenient to represent the state |i) by the amplitudes C,(#) and C,(¢) of being in the upper
and lower level, respectively, as given by (6). The transformations between these two bases
of the quantum two-level state are given by

Can)\ _ 1 (E-iy —E—iy)(C®Y)_,(C®
<Cb(l‘)> T E ( v % ) (Cz(l‘)) =D (CQ(t)) an
and the inverse transformation is given by
1 E+iy
(cl (r)) 1 v (cm)) _ (ca(n)‘ )
Cy(1) 2\ @ Cp(t) Cp(1)
We find according to equation (17) that
Ca(t):Cl(t)_CZ(t)_%(Cl(t)+c2(l))v 19)
V*
Cp(1) = E(Q(t) +Ca(1)). (20)

We demonstrate the calculation of the time development of the two-level system under
the pseudo-Hermitian Hamiltonian with real eigenvalues, in an example, assuming that the
atom is initially in the upper level, i.e., assuming

Ca(0) =15 Cp(0) =0. 21
Then, according to (18), for this example
Ci(0) = 5 C2(0) = —3, (22)
and according to (16):

Ci(t) = §e ', Cy(t) = —4 P, (23)
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Using equations (19) and (20) we get for this example:

C,(t) = cos(Et) — % sin(Et), (24)

*

Cy(t) = —ivF sin(E?). 25)

It is easy to check that C,(¢) and Cp(¢) of equations (24) and (25) with the initial conditions
C,(0) = 1,Cp(0) = 0 obey equation (6). One finds that the normalization condition
|C.|> +|Cp|* = 1 is not obeyed here since the pseudo-Hamiltonian (6) includes in addition to
the Hermitian Rabi matrix element also damping and amplifying terms (related to iy in the
Hamiltonian). Although we have demonstrated here explicit calculation of C,(z) and Cj(¢)
for certain initial conditions, the present procedure of calculations can be used for any initial
conditions.

We can summarize the following properties for the time development of the present
system:

(a) Although the present two-level system includes two decay constants y, and y; (see (3)),
for cases for which |V |> > y? the whole system decays only by the average decay constant
Yat¥p

>

(b) By transforming the equations of motion to this decaying system (see (4)), we get equations
of motion described by a pseudo-Hermitian Hamiltonian (see (6)).

(c) The ‘pseudo-Hermitian Rabi oscillations’ are in frequency /|V |> — ¥ 2 which is different
from the Rabi frequency |V | for the usual two-level Hermitian Hamiltonian on resonance.

(d) The amplitudes C,(t) and C,(¢) for the atom to be in the upper and lower state,
respectively, depend on both the Rabi matrix element and the damping and amplifying
parameters £y .

(e) The present pseudo-Hermitian Hamiltonian is described in the frame in which the whole
atom is decaying by the average decaying constant % and the transformation of the
amplitudes to the ordinary frame (i.e., to C,(¢) and C; (¢)) can be made by using (4).

(f) The eigenvectors of the pseudo-Hermitian Hamiltonian obey the bi-orthonormality
condition based on the metric n, (see (10) and (11)).

(g) Summarizing the present analysis, we find that the properties of the present system are
related to solutions of the Schrodinger equation for Hamiltonian (6). Also we find that the
present pseudo-Hermitian Hamiltonian includes certain symmetries which are discussed
in the following section.

Finally, let us mention briefly what happens if |V |> — 2 < 0. In this case the eigenvalues
of H are purely imaginary. However, H still fulfils the conditions of theorem 3, [13], and hence
it is pseudo-Hermitian. Therefore, equations (17)—(23) remain valid. The only difference is
in equations (24) and (25). These become

Ca(t) = cosh(y/y% — |V Pr) — ﬁ sinh(v/72% — |V 1) (26)

—iV* .
Cb(t) = \/ﬁ Slnh(\/ ]/2 - |V|2t) (27)

Hence we have two different exponential decay modes

exp{—(ya;yb) im}t
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without any oscillations. Also, the critical situation |V |> — % = 0 can be easily solved to
yield

C,(t)y=1—yt, Cp(t) = —iV™t. (28)

(Note that in this case |V | = y.)
Since these are multiplied by exp [—(%)t] we have an initial linear dependence
followed by basically exponential decay. Since our solutions (24)—(28) should be multiplied

by the exponential decay exp [— (%32 )¢] any divergences [15] do not occur in our system.

3. C-, PT- and CPT-invariance of the present pseudo-Hermitian Hamiltonian

Usually the ‘time reversal’ and the ‘spatial inversion’ transformations are defined as
(t,X) = (—t,X) and (t,X) — (¢, —X), respectively. The latter transformation changes
right-handed spatial coordinate system to left-handed coordinate system and it is, therefore,
referred to as a ‘parity’ transformation.

We follow here the method introduced by Bender ez al [5], for describing the symmetries
of our pseudo-Hermitian Hamiltonian. They defined the P operator of the two-level system as

0 1
P=<1 0), (29)

sothat P = P!, P2 = 1.

There are certain degrees of freedom in choosing the C-, PT- and CPT-operators. For
example, Mostafazadeh [11] and Ahmed [9] have defined ‘generalized P operator’ which for
our system is constructed as

2 0 v

P =3 (D" = (_M N ) : (30)
n=1 E

We find that in definition (30) the operator P is proportional to the dipole interaction matrix

element. The common property of definitions (29) and (30) is that the operator P introduces

transitions between the two states which have an opposite parity (related to the property of the

dipole moment).

The non-uniqueness of the P and T operators follows from the non-uniqueness of the
choice of eigenvectors and metric operator 7, as explained previously concerning the use
of equations (8) and (9). The antilinear operator T is described in the general case by the
multiplication of a unitary operator U by Ky where K is a complex conjugation [16]:

T = UKo. (31

Note that K = 1 and therefore T~ = KoU'.

Following Bender et al [5] we define for our system U = 1 so that T becomes equivalent
to Ko. Different definitions for the time reversal operator 7 have been introduced by
Mostafazadeh [11] and Ahmed [9], but we use the simple representation [5]:

T = K. (32)
We find that PT commutes with the Hamiltonian as
PKoHK,'P~' = H. (33)

In comparison to the ordinary Hermitian Hamiltonian which obeys the relation H = H',
we find that the present pseudo-Hermitian Hamiltonian of equation (6) obeys the relation

2,02 (1 0
H°/E _(0 1). (34)
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This equality can be related to another symmetry of the present pseudo-Hermitian Hamiltonian.
Using the generalized definition of conjugation operator [11] we get for the present system

> 1 (iy -V
C=3 ("I} = - (_‘7"/ _iy> — —HJE. (35)
n=1

Weigert [17] has shown that the conjugation operator is a function of the Hamiltonian. This
fact is verified for the present system where C is a simple function of the Hamiltonian. We
find in agreement with (35) that C?> = 1, and that C commutes with the Hamiltonian in a quite
trivial way. This invariance property eliminates negative inner products [5] as expressed by
the metric 7, of (10) and the positive inner products of (11). For more general properties of
pseudo-Hermitian Hamiltonians we refer to the literature [3—13, 15, 17-19].

4. Discussion and conclusions

In this work we have analysed a certain problem taken from the field of quantum optics
by exploiting the methods introduced in the literature [3—19] for treating pseudo-Hermitian
Hamiltonians. We have treated the time development of a two level atomic system in which
a resonant classical em field leads to dipole interaction between the two levels, and damping
of the atoms from these two levels is described by phenomenological damping constants. For
cases for which the dipole interaction is large relative to the damping effects (i.e., above a
certain critical value) the whole two level system decays only by the averaged decay constant
and the probability to be in the two decaying states shows oscillations between these two
levels. Although these oscillations have a certain similarity to Rabi oscillations which is a very
fundamental effect in quantum optics [1, 14], the present analysis by the use of a certain pseudo-
Hermitian Hamiltonian shows new interesting effects. The ‘pseudo Rabi frequency’ and the
amplitudes of being in the two levels depend in addition to the dipole interaction matrix element
also on the damping and amplifying processes included in the pseudo-Hermitian Hamiltonian.
In developing the present pseudo-Hermitian Hamiltonian we have used definitions of inner
products related to a certain metric and introduced bi-orthogonal basis of states depending
on this metric. The relations between the present pseudo-Hermitian Hamiltonian and certain
symmetries known as P-, PT- and CPT-symmetries have been evaluated. The results obtained
by the present investigation may be checked experimentally by preparing such two-level
system and observing its time development by using probe em fields [1].
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